Printed Pages - 4

Roll No.

328356(28)

B. E. (Third Semester) Examination, Nov.-Dec. 2021

(New Scheme)

(Electronics & Telecommunication Engineering Branch)

DIGITAL LOGIC DESIGN

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory.

Attempt any two parts from (b), (c) and (d).

samu umeu au **Unit-I** and include a do hou

- 1. (a) What is self complementary code?
 - (b) Using Boolean algebra, prove that

2

PTO

(i)
$$AB + ABC + A\overline{B} = A$$

(ii)
$$(B+A)(B+D)(A+C)(C+D) = BC + AD$$

(iii)
$$1 + A' = 1$$

- (c) Demonstrate by means of truth table the validity of the De Morgan's theorems (Both forms) for three variables.
- (d) Write the short notes on Duality.

Unit-H

- 2. (a) Design Not Gate using Ex-OR Gate. 2
 - (b) Simplify the logic expression using K-map.

$$F(ABCD) = \sum m(0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)$$

(c) Reduce the following expression using tabular method.

$$F(A, B, C, D) = \sum (0, 2, 3, 5, 8, 10, 11, 13)$$
and also design logic circuit using gates. 7

(d) Implement the following function using the don'tcare conditions. Assume that both the normal and complement inputs are available.

$F = A^{I}B^{I}C^{I} + AB^{I}D + A^{I}B^{I}CD^{I}$	with	no	more
than two NOR gates.			

$$d = ABC + AB^{1}D^{1}$$

Unit-III

- 3. (a) Define Don't care Terms.
 - (b) Implement a full Adder using two half Adder and an OR gate.
 - (c) Design BCD-to-Excess-3 code converter.
 - (d) Implement full adder using Decoder.

Unit-IV

- 4. (a) Write two differences between Latch and Flip-flops. 2
 - (b) Draw the logic diagram of R-S flip-flop and explain its working to :
 - (i) Obtain the flip-flop characteristics table
 - (ii) Obtain characteristics equation
 - (iii) Obtain excitation table

7

2

	(c) Design a counter with the following binary sequence:		
	0, 4, 2, 1, 6 and repeat. Use JK flip flops.	7	
	(d) Draw and descibe the working of a Serial-in-serial- out (SISO) shift register. Explain how a number can be shifted in and out from such register?	7	
	Unit-V	Į.	
5.	(a) What is Fan-IN and Fan-OUT?	2	
	(b) Compare the characteristics of DTL, TTL, RTL and ECL logic families.	7	
	(c) Draw the circuit diagram and explain the operation of 2 inputs TTL NAND gate.	7	
	(d) Draw and explain the basic CMOS inverter circuit.	7	